ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
Samim Anghaie, Larry L. Humphries, Nils J. Diaz
Nuclear Technology | Volume 91 | Number 3 | September 1990 | Pages 376-387
Technical Paper | Material | doi.org/10.13182/NT90-A34458
Articles are hosted by Taylor and Francis Online.
The differential gamma scattering spectroscopy technique is a novel means of nondestructive testing using Compton scattering to determine local density perturbations in a test sample. A narrow collimated beam of gamma rays irradiates a test sample, and the scattered radiation field is detected in a transversely placed high-purity germanium detector. This detector provides excellent energy resolution so that a detailed energy spectrum can be obtained. This spectrum is then subtracted from a reference spectrum that was collected from a well-known, unflawed sample to obtain the differential spectrum. This differential spectrum contains information characterizing the flaw. Using the relationship between scattering angle and scattering energy that characterizes Compton scattering, the single-scattered spectrum can be used to determine the location of scattering and, consequently, the density distribution along the portion of the primary beam path that passes through the sample. An attractive feature of this technique that distinguishes it from other Compton scattering techniques is the ability to detect flaws both on and off the primary beam path. A series of experiments was conducted to assess the sensitivity of the detection system for different sizes and shapes of flaws located throughout the sample. The results of these experiments are analyzed.