ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Samim Anghaie, Larry L. Humphries, Nils J. Diaz
Nuclear Technology | Volume 91 | Number 3 | September 1990 | Pages 376-387
Technical Paper | Material | doi.org/10.13182/NT90-A34458
Articles are hosted by Taylor and Francis Online.
The differential gamma scattering spectroscopy technique is a novel means of nondestructive testing using Compton scattering to determine local density perturbations in a test sample. A narrow collimated beam of gamma rays irradiates a test sample, and the scattered radiation field is detected in a transversely placed high-purity germanium detector. This detector provides excellent energy resolution so that a detailed energy spectrum can be obtained. This spectrum is then subtracted from a reference spectrum that was collected from a well-known, unflawed sample to obtain the differential spectrum. This differential spectrum contains information characterizing the flaw. Using the relationship between scattering angle and scattering energy that characterizes Compton scattering, the single-scattered spectrum can be used to determine the location of scattering and, consequently, the density distribution along the portion of the primary beam path that passes through the sample. An attractive feature of this technique that distinguishes it from other Compton scattering techniques is the ability to detect flaws both on and off the primary beam path. A series of experiments was conducted to assess the sensitivity of the detection system for different sizes and shapes of flaws located throughout the sample. The results of these experiments are analyzed.