ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reviewers needed for NRC research proposals
The deadline is fast approaching for submitting an application to become a technical reviewer for the Nuclear Regulatory Commission’s fiscal year 2025 research grant proposals.
Per F. Peterson
Nuclear Technology | Volume 144 | Number 3 | December 2003 | Pages 279-288
Technical Paper | Fission Reactors | doi.org/10.13182/NT144-279
Articles are hosted by Taylor and Francis Online.
Gas-turbine power conversion systems can have lower capital costs than comparable steam-turbine systems due to their higher power density. The recent commercialization of magnetic bearing systems for large turbomachinery now makes direct recuperated Brayton cycles the preferred power conversion choice for gas-cooled reactors. This paper presents a multiple-reheat closed gas cycle optimized to use energy input from liquid-metal or molten-salt coolants with temperatures as low as 550 to 650°C. By utilizing reheat, these molten coolant gas cycles (MCGCs) have the potential for substantially higher thermal efficiency than current gas-cooled reactors if used with comparable turbine inlet temperatures. The MCGC system also eliminates the need for steam generators, which removes the potential for chemical reactions between the molten coolant and steam, and greatly simplifies the control of tritium for fusion energy systems.