ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Selim Sancaktar, T. van de Venne
Nuclear Technology | Volume 91 | Number 1 | July 1990 | Pages 112-117
Technical Paper | Safety of Next Generation Power Reactor / Nuclear Safety | doi.org/10.13182/NT90-A34447
Articles are hosted by Taylor and Francis Online.
Insights obtained from various probabilistic risk analysis (PRA) studies performed by the Westinghouse Electric Corporation and associates on new pressurized water reactor (PWR) designs are briefly discussed and compared. The discussion is limited to internal initiating events since external event analysis requires site-specific data. The plant core melt frequency resulting from these initiating events is used as the measure to identify dominant accident sequences. The initiating events, failures of frontline safety systems and their support systems, operator actions, and consequential failures are used to measure the response of each design to various safety issues discussed. A conventional PWR plant is used as the base to compare the features of the different designs and the insights obtained from the PRA studies. The cases discussed include (a) a conventional PWR plant design (Westinghouse), (b) a Progetto Unificato Nucleare design (Westinghouse and Ansaldo), (c) a Sizewell-B design (Westinghouse and National Nuclear Corporation), and (d) an advanced PWR design (Westinghouse and Mitsubishi Heavy Industries). In studies (b), (c), and (d), PRAs are performed in the early design stages to evaluate the effect of primary safety and support systems on the plant core melt frequency. The results of the PRA evaluations are used, together with other considerations, to make appropriate design modifications. The experience obtained from studies (b), (c), and (d) leads to the conclusion that PRAs are effective in supporting early plant design efforts for engineered safety systems. Probabilistic risk analysis models provide an additional decision-making tool to evaluate the importance and effect of various design alternatives.