ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Stanley Rosen, Richard D. Ivany, John F. Kapinos, Suk K. Sim
Nuclear Technology | Volume 91 | Number 1 | July 1990 | Pages 89-94
Technical Paper | Safety of Next Generation Power Reactor / Nuclear Safety | doi.org/10.13182/NT90-A34444
Articles are hosted by Taylor and Francis Online.
Combustion Engineering’s advanced light water reactor, System 80+, is an evolutionary upgrade of the proven System 80® nuclear steam supply system design. While both plants are rated at 3817 MW(thermal), System 80+ incorporates a number of design enhancements, including direct vessel injection for the safety injection (SI) system and other changes to the reactor cooling system. The results of a best-estimate small-break loss-of-coolant accident (LOCA) study that addresses utility investment protection concerns is presented. Specifically, the size piping break that can be tolerated without the liquid or two-phase fluid level falling below the top of the active core is addressed. Using best-estimate analytical procedures, and assuming no single failure, the active core remains covered with substantial margin for breaks up to 0.254-m (10-in.) diameter. This reduces the possibility of core damage due to a small LOCA. A large-break, cold-leg LOCA licensing analysis is also presented that addresses the reflood capability after the end of SI tank discharge without credit for a low-pressure SI pump system. This analysis confirms that the improved high-pressure SI system provides adequate reflood capability to satisfy the U.S. Nuclear Regulatory Commission LOCA licensing criteria.