ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Dong H. Nguyen
Nuclear Technology | Volume 91 | Number 1 | July 1990 | Pages 61-74
Technical Paper | Safety of Next Generation Power Reactor / Fission Reactor | doi.org/10.13182/NT90-A34441
Articles are hosted by Taylor and Francis Online.
The design of the next generation of power reactors will emphasize passive safety and enhanced engineered systems. True passivity can be achieved by capitalizing on natural laws to restore reactor stability during an off-normal event. The most effective stabilizing mechanisms relying solely on natural laws— without human interference—are the feedback reactivities produced by a change in the reactor thermal state. During 1986 and 1987, an important research program was undertaken at the Fast Flux Test Facility (FFTF) to advance the understanding of feedback mechanisms and to investigate passive safety in liquid-metal reactors. The experimental program began with a series of static feedback reactivity measurements aimed at separating feedback components and ended with a demonstration of passive safety in a series of loss-of-flow-without-scram (LOFWOS) to natural circulation tests. Described here are (a) the fundamental experimental concepts used to unfold various feedback components, (b) the analysis of integral data used to construct feedback reactivity models, (c) the comparison of FFTF reactivities with mechanistic feedback models in the SASSYS/SAS4A code system, and (d) the pretest calculations for the LOFWOS test series, using the new FFTF feedback models.