ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
T. C. Hung, V. K. Dhir
Nuclear Technology | Volume 91 | Number 1 | July 1990 | Pages 51-60
Technical Paper | Safety of Next Generation Power Reactor / Fission Reactor | doi.org/10.13182/NT90-A34440
Articles are hosted by Taylor and Francis Online.
The Modified Dynamic Simulator for Nuclear Power Plants (MDSNP) code is applied to predict the one-dimensional thermal-hydraulic response of the shutdown heat removal system (SHRS) in the Sodium Advanced Fast Reactor and to study the effect of uncertainty and variation in certain design parameters of the SHRS. An example of the use of the code as a design tool to optimize the performance of the SHRS is given. The results show that when neither the direct reactor auxiliary cooling system nor the reactor air cooling system (RACS) is available to remove decay heat, the intrinsic thermal capacity of the pool limits the hot pool to a temperature below the sodium boiling temperature until 30 h after reactor scram. The peak hot pool temperature when only the RACS is available is 710°C, which is ∼22°C below the American Society of Mechanical Engineers service D condition. The changes in emissivity and ambient air temperature slightly affect the time at which an overflow occurs, the temperature histories of the pools, and the temperature difference between the pools. A higher elevation of components such as intermediate heat exchangers and direct reactor heat exchangers is found to increase the available hydrostatic head, which, in turn, reduces the temperature difference between the two pools.