ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Daniel E. Carroll, Kenneth D. Bergeron, Werner Scholtyssek, Greg D. Valdez, Richard Gido+
Nuclear Technology | Volume 91 | Number 2 | August 1990 | Pages 259-267
Technical Paper | Safety of Next Generation Power Reactor / Technique | doi.org/10.13182/NT90-A34433
Articles are hosted by Taylor and Francis Online.
The CONTAIN code is the U.S. Nuclear Regulatory Commission ’s best-estimate code for the evaluation of the conditions that may exist inside a reactor containment building during a severe accident. Included in the phenomena modeled are thermal hydraulics, radiant and convective heat transfer, aerosol loading and transient response, fission product transport and heating effects, and interactions of coolant and corium with the containment atmosphere and structures. An enhanced version of the code, designated CONTAIN LMR, has been used by groups in Japan and the Federal Republic of Germany to assess the ability of CONTAIN to analyze accident consequences for liquidmetal reactor (LMR) plants. Collaborative efforts to improve the modeling capabilities of CONTAIN for LMR applications have also been pursued. A brief description of physical models is presented, followed by a short review of validation exercises performed with CONTAIN. Finally, some demonstration calculations of an integrated LMR application are presented.