ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Karl Verfondern, Werner Schenk, Heinz Nabielek
Nuclear Technology | Volume 91 | Number 2 | August 1990 | Pages 235-246
Technical Paper | Safety of Next Generation Power Reactor / Fuel Cycle | doi.org/10.13182/NT90-A34431
Articles are hosted by Taylor and Francis Online.
The high fission product retention potential of coated particle fuel combined with inherently passive temperature controls guarantee almost complete fission product retention during an accident in a small modular high-temperature reactor. Extensive experimental results provide the basis for this claim to inherent safety. Models and codes have been developed to (a) predict realistic, or at least conservative, overall release rates from the primary circuit, (b) reduce the large number of experimental results to a small set of characteristic coefficients, and (c) predict release beyond experimental conditions. Conservative predictions of release from the core have been done using a traditional pressure vessel model for release from fuel particles and simplified diffusion models for fission product transport. This approach is based on experimental work that has been done on nearly all possible accident conditions and is limited by the finite number of experiments. Data reduction has been achieved with two different modeling approaches combined into a new model that is equally relevant to all volatile fission products. The safety design of the 200-MW(thermal) HTR-Modul is based on Kernforschungsanlage Jülich experimental results from fuel accident condition performance testing and the modeling effort has been applied to a safety review.