ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Charles J. Mueller, David C. Wade
Nuclear Technology | Volume 91 | Number 2 | August 1990 | Pages 215-225
Technical Paper | Safety of Next Generation Power Reactor / Nuclear Saftey | doi.org/10.13182/NT90-A34429
Articles are hosted by Taylor and Francis Online.
The approach and methods used at Argonne National Laboratory to assess core damage probability in risk assessments for innovative liquid-metal reactor (LMR) designs using metal-fueled cores in pool configurations are outlined. Bounding estimates for the predicted frequency of core damage from all unprotected initiating events are developed by establishing a set of reference scenarios from traditional anticipated transient without scram events. Sources of uncertainty are described and categorized. A probabilistic treatment is used to propagate the various uncertainties through safety analyses to determine their effects on limiting reactor parameters. For example, probability distributions for safety margins to selected core temperatures are propagated from sensitivity studies and estimates of the underlying uncertainties in reactivity feedback coefficients. Considerable self-cancellation of many of the contributors to core response uncertainties is demonstrated analytically. Upper bound probabilities of core damage are then calculated for the LMR cores currently being designed. The results show that these designs have much lower probabilities of suffering core damage than are predicted in published risk assessments for commercial power reactors. Finally, design strategies that can be used to reduce these already low probabilities to almost arbitrarily low values are discussed.