ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Charles J. Mueller, David C. Wade
Nuclear Technology | Volume 91 | Number 2 | August 1990 | Pages 215-225
Technical Paper | Safety of Next Generation Power Reactor / Nuclear Saftey | doi.org/10.13182/NT90-A34429
Articles are hosted by Taylor and Francis Online.
The approach and methods used at Argonne National Laboratory to assess core damage probability in risk assessments for innovative liquid-metal reactor (LMR) designs using metal-fueled cores in pool configurations are outlined. Bounding estimates for the predicted frequency of core damage from all unprotected initiating events are developed by establishing a set of reference scenarios from traditional anticipated transient without scram events. Sources of uncertainty are described and categorized. A probabilistic treatment is used to propagate the various uncertainties through safety analyses to determine their effects on limiting reactor parameters. For example, probability distributions for safety margins to selected core temperatures are propagated from sensitivity studies and estimates of the underlying uncertainties in reactivity feedback coefficients. Considerable self-cancellation of many of the contributors to core response uncertainties is demonstrated analytically. Upper bound probabilities of core damage are then calculated for the LMR cores currently being designed. The results show that these designs have much lower probabilities of suffering core damage than are predicted in published risk assessments for commercial power reactors. Finally, design strategies that can be used to reduce these already low probabilities to almost arbitrarily low values are discussed.