ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Shifting the paradigm of supply chain
Chad Wolf
When I began my nuclear career, I was coached up in the nuclear energy culture of the day to “run silent, run deep,” a mindset rooted in the U.S. Navy’s submarine philosophy. That was the norm—until Fukushima.
The nuclear renaissance that many had envisioned hit a wall. The focus shifted from expansion to survival. Many utility communications efforts pivoted from silence to broadcast, showcasing nuclear energy’s elegance and reliability. Nevertheless, despite being clean baseload 24/7 power that delivered a 90 percent capacity factor or higher, nuclear energy was painted as risky and expensive (alongside energy policies and incentives that favored renewables).
Economics became a driving force threatening to shutter nuclear power. The Delivering the Nuclear Promise initiative launched in 2015 challenged the industry to sustain high performance yet cut costs by up to 30 percent.
Peter Hofmann, Mario Enrique Markiewicz, José Luis Spino
Nuclear Technology | Volume 90 | Number 2 | May 1990 | Pages 226-244
Technical Paper | Matetial | doi.org/10.13182/NT90-A34417
Articles are hosted by Taylor and Francis Online.
The chemical reaction behavior of B4C absorber material with stainless steel 1.4919 (Type 316) and Zircaloy-4 is studied in the 800 to 1600 C temperature range. The reaction kinetics for both systems can be described by parabolic rate laws. Above 1000°C, the reaction zone growth rates in the B4C/stainless steel system are about two orders of magnitude higher than those in the B4C/Zircaloy-4 system. The compatibility specimens are quickly and completely liquefied at temperatures ≥1250°C for the B4C/stainless steel reaction couples and temperatures ≥1650°C for the B4C/Zircaloy-4 reaction couples. In both reaction systems, liquefaction occurs below the melting points of the components.