ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—July through September
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from July through September 2024.
Stay tuned for the top stories from the rest of the past year.
Peter Hofmann, Mario Enrique Markiewicz, José Luis Spino
Nuclear Technology | Volume 90 | Number 2 | May 1990 | Pages 226-244
Technical Paper | Matetial | doi.org/10.13182/NT90-A34417
Articles are hosted by Taylor and Francis Online.
The chemical reaction behavior of B4C absorber material with stainless steel 1.4919 (Type 316) and Zircaloy-4 is studied in the 800 to 1600 C temperature range. The reaction kinetics for both systems can be described by parabolic rate laws. Above 1000°C, the reaction zone growth rates in the B4C/stainless steel system are about two orders of magnitude higher than those in the B4C/Zircaloy-4 system. The compatibility specimens are quickly and completely liquefied at temperatures ≥1250°C for the B4C/stainless steel reaction couples and temperatures ≥1650°C for the B4C/Zircaloy-4 reaction couples. In both reaction systems, liquefaction occurs below the melting points of the components.