ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Yongsoo Hwang, P. L. Chambré, T. H. Pigford, W. W.-L. Lee
Nuclear Technology | Volume 90 | Number 2 | May 1990 | Pages 205-214
Technical Paper | Radioacitive Waste Management | doi.org/10.13182/NT90-A34415
Articles are hosted by Taylor and Francis Online.
Salt is a candidate rock to host nuclear waste repositories in many countries. Brine exists in natural salt as inclusions in salt crystals and in grain boundaries. Brine inclusions in crystals move to nearby grain boundaries when subjected to a temperature gradient, because of the temperature-dependent solubility of salt. Brine in grain boundaries moves under the influence of a pressure gradient. Brine consolidates around high-level waste packages a few years after emplacement. Heated salt near the waste package expands against the waste package and surrounding salt, creating high compressive stresses near the waste package and resulting in pressure above the lithostatic pressure. Brine pressure increases because grain-boundary brine expands more than does the salt. This increased pressure gradient causes brine to flow outward into the cooler salt. Outward flow of brine relieves the pressure gradient on the fluid, which finally relaxes to near-lithostatic pressure. Outward brine movement can become a mechanism for radionuclide transport. To determine the extent to which advection by brine in grain boundaries is an important transport mechanism for released radionuclides, it is necessary to estimate the time-dependent migration of brine. The possible role of brine migration in radionuclide transport in a nuclear waste repository is studied. Mathematical derivation of the analysis is given, along with numerical illustrations using parameter values typical of a nuclear waste repository. For heat-emitting wastes and the parameters studied here, brine migration in salt is minuscule, of the order of micrometres per year, localized within a few metres from the waste package, and highly transient, fading away within a few years of waste emplacement.