ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Hermann Würz, Werner Eyrich, Hans-Joachim Becker
Nuclear Technology | Volume 90 | Number 2 | May 1990 | Pages 191-204
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT90-A34414
Articles are hosted by Taylor and Francis Online.
A method for the nondestructive assay of spent light water reactor (LWR) fuel assemblies based on combined active and passive neutron counting is presented. The method allows the determination of burn-up, total fissile content, original enrichment of the spent fuel, and type of fuel [uranium or mixed oxide (MOX)]. The method, which was originally developed for criticality control in the front end of a reprocessing plant, can be used for plant safety assurance in nuclear installations and fuel storage facilities and for safeguards purposes. Measurements on spent uranium and MOX LWR fuel assemblies were undertaken in storage ponds at reprocessing plants and power stations. Results and experiences of the demonstration program are presented. Without prior knowledge of any fuel assembly data, the burnup of uranium fuel assemblies can be determined with an uncertainty of ±1200 MWd/tonne U and the initial enrichment of uranium fuel assemblies with an accuracy of ±5%. Using these data and accuracies, the total plutonium content can be determined from isotopic correlations with an accuracy of better than ±0.3 kg/tonne U for pressurized water reactor and ±0.5 kg/tonne U for boiling water reactor fuel assemblies.