ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Rob P. Rechard, Lawrence C. Sanchez, Holly R. Trellue
Nuclear Technology | Volume 144 | Number 2 | November 2003 | Pages 222-251
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT03-5
Articles are hosted by Taylor and Francis Online.
This article presents several reasonable cases in which four mechanisms - dissolution, physical mixing, adsorption, and precipitation (either chemical change or evaporation) - might concentrate fissile material in and around a disposal container for radioactive waste at the proposed repository at Yucca Mountain, Nevada. The possible masses, concentrations, and volume are then compared to criticality limits. The cases examined evaluate the geologic barrier role in preventing criticality since engineered options for preventing criticality (e.g., boron or gadolinium neutron absorber in the disposal container) are not considered. The solid concentrations able to form in the natural environment are insufficient for criticality to occur because (a) solutions of 235U and 239Pu are clearly not critical; (b) physical mixing of fissile material with the entire potential iron oxide (as goethite - FeOOH) in a waste package is not critical; (c) the adsorption of 239Pu on consolidated iron oxide in a waste package is not critical; (d) the adsorption of 235U on consolidated iron oxide in a waste package is not critical when accounting for reduced adsorption because of carbonates at high pH; (e) the filtration of iron oxide colloids, containing fissile material, by the thin invert material is not critical; (f) insufficient retention through precipitation of 235U or 239Pu occurs in the invert; (g) adsorption of 235U and 239Pu on devitrified or clinoptolite-rich tuff below the repository is not critical; (h) the average precipitation/adsorption of 235U as uranyl silicates in the tuff is not critical by analogy with calcite deposition in lithophysae at Yucca Mountain; and (i) precipitation/adsorption (caused by cyclic drying) as uranyl silicates on fracture surfaces of the tuff is not critical by analogy with the oxidation of UO2, migration of UVI, and precipitation in fractures at the Nopal I ore deposit in Mexico.