The possibility of a flow instability in a fuel assembly during a hypothetical loss-of-coolant accident (LOCA) in the production reactors at the Savannah River Site (SRS) is currently the subject of many analyses. The Bingham pumps, which circulate flow through the Savannah River reactors, may be susceptible to cavitation because of the decrease in pressure that accompanies a LOCA. Cavitation in the Bingham pumps during a LOCA could reduce the forced flow through the assemblies and thus could promote flow instability. An analysis was performed at the Idaho National Engineering Laboratory to aid in the evaluation of the potential significance of cavitation on flow instability. The RELAP5 computer code and a model of the L-Reactor at the SRS were the primary analysis tools. A cavitation model was developed using correlations generated at Savannah River and the RELAP5 control system. Benchmark comparisons were performed between the RELAP5 cavitation model and cavitation tests performed in L-Reactor. Best-estimate calculations of a LOCA initiated by a double-ended guillotine break in the inlet piping to the reactor were then performed for a range of core powers. The LOCA calculations were used to determine the initial core power leading to the onset of cavitation and the effects of cavitation on system response. Cavitation was calculated to occur in the broken loop when the initial core power was >1400 MW. Cavitation did not cause a catastrophic reduction in core flow. The effects of cavitation were self-limiting because of feedback among the pump head, loop flow, and the available and required net positive suction head.