ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Richard D. Peters, Urban P. Jenquin, Langdon K. Holton, Jr.
Nuclear Technology | Volume 90 | Number 1 | April 1990 | Pages 78-86
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT90-A34387
Articles are hosted by Taylor and Francis Online.
Measurement and prediction of outside surface exposure rates and measurement of gamma photon spectra from radioactive sources are described. The sources were 30-cm-diam canisters filled with borosilicate glass to a height of ∼100 cm. Each canister contained up to 237 kCi of 137 Cs and 159 kCi of 90Sr. Exposure rates on the outside surfaces ranged from 26 000 to 320 000 R/h, chiefly from decay of 137 Cs. The radiation field around the canisters was modeled using two codes based on point kernel theory (ISOSHLD-II and QAD-CG) and a transport theory code (ANISN). It was found that the point kernel codes overpredicted surface exposure rates for the radioactive canisters by a factor of ∼2. The surface exposure rates calculated by the transport theory code were ∼25% higher than the measurements. Spectral measurements indicate that most exposure is associated with gamma radiation in the 0.1- to 0.5-MeV range.