ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—July through September
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from July through September 2024.
Stay tuned for the top stories from the rest of the past year.
Suresh V. Garimella, Richard N. Christensen
Nuclear Technology | Volume 89 | Number 3 | March 1990 | Pages 388-398
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT90-A34377
Articles are hosted by Taylor and Francis Online.
An experimental investigation was undertaken in which transient condensation of steam-air mixtures occurred on one face of a large aluminum block of which all the other faces were insulated. Tests were conducted in a pressure vessel at pressures of up to 650 kPa. The transients were provided by a sudden increase in the vessel pressure from a given value to a much higher value by the introduction of additional steam. Temperature measurements within the block agreed well with results from a finite difference analysis of the condensing surface and block. Visual observation of the condensing surface indicated that the mode of condensation was predominantly dropwise. The dependence of the heat transfer coefficient on time, pressure, severity of the transient, percentage of noncondensables, and the driving temperature difference was studied. The results at the much higher pressures and transient conditions used in this study agreed with observations in the literature of such trends at lower pressures. There was evidence of the occurrence of a buildup of noncondensables at the condensing surface with time.