ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Eric V. Brown, Leonard W. Gray, D. William Tedder
Nuclear Technology | Volume 89 | Number 3 | March 1990 | Pages 328-340
Technical Paper | Chemical Processing | doi.org/10.13182/NT90-A34370
Articles are hosted by Taylor and Francis Online.
A computer model of an air-lift dissolver was developed to predict the dissolution rates for plutonium oxide (PuO2), dysprosium oxide (Dy2O3), and incinerator ash. This model combines surface kinetics with mass transfer effects to obtain overall rate expressions. The mass transfer coefficients are related to several major process variables. These predictions were compared with experimental tests at Savannah River Laboratory using simulated ash and Dy2O3 as a surrogate for refractory PuO2. The present version of the model overestimates the residual fluoride concentrations in dissolver effluents by ∼50% for several reasons, which are discussed. The minimum air sparge rates to achieve liquid circulation in the dissolver are predicted quite well, within ± 6%. The nonvolatile dissolved solids are estimated to within ±5 to 20%. Dysprosium dissolution is predicted to within ±10%. Dysprosium oxide is a poor surrogate for refractory PuO2.