ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Eric V. Brown, Leonard W. Gray, D. William Tedder
Nuclear Technology | Volume 89 | Number 3 | March 1990 | Pages 328-340
Technical Paper | Chemical Processing | doi.org/10.13182/NT90-A34370
Articles are hosted by Taylor and Francis Online.
A computer model of an air-lift dissolver was developed to predict the dissolution rates for plutonium oxide (PuO2), dysprosium oxide (Dy2O3), and incinerator ash. This model combines surface kinetics with mass transfer effects to obtain overall rate expressions. The mass transfer coefficients are related to several major process variables. These predictions were compared with experimental tests at Savannah River Laboratory using simulated ash and Dy2O3 as a surrogate for refractory PuO2. The present version of the model overestimates the residual fluoride concentrations in dissolver effluents by ∼50% for several reasons, which are discussed. The minimum air sparge rates to achieve liquid circulation in the dissolver are predicted quite well, within ± 6%. The nonvolatile dissolved solids are estimated to within ±5 to 20%. Dysprosium dissolution is predicted to within ±10%. Dysprosium oxide is a poor surrogate for refractory PuO2.