ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Eric V. Brown, Leonard W. Gray, D. William Tedder
Nuclear Technology | Volume 89 | Number 3 | March 1990 | Pages 328-340
Technical Paper | Chemical Processing | doi.org/10.13182/NT90-A34370
Articles are hosted by Taylor and Francis Online.
A computer model of an air-lift dissolver was developed to predict the dissolution rates for plutonium oxide (PuO2), dysprosium oxide (Dy2O3), and incinerator ash. This model combines surface kinetics with mass transfer effects to obtain overall rate expressions. The mass transfer coefficients are related to several major process variables. These predictions were compared with experimental tests at Savannah River Laboratory using simulated ash and Dy2O3 as a surrogate for refractory PuO2. The present version of the model overestimates the residual fluoride concentrations in dissolver effluents by ∼50% for several reasons, which are discussed. The minimum air sparge rates to achieve liquid circulation in the dissolver are predicted quite well, within ± 6%. The nonvolatile dissolved solids are estimated to within ±5 to 20%. Dysprosium dissolution is predicted to within ±10%. Dysprosium oxide is a poor surrogate for refractory PuO2.