ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
Eric Leclerc, Georges J. Berthoud
Nuclear Technology | Volume 144 | Number 2 | November 2003 | Pages 158-174
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT03-A3437
Articles are hosted by Taylor and Francis Online.
In hypothetical Severe Accident studies for a PWR, a large amount of molten corium may be poured into water. There is then a risk of Steam Explosion. After the premixing sequence in which the melt is more or less dispersed into water, a fine fragmentation process may start, which can lead to an escalation. Such an event is generally triggered by the destabilization of the vapor film surrounding the hot melt droplets. In this paper, an attempt to describe all the successive processes leading to this fine fragmentation is presented.First, a critical analysis of previous models is performed, allowing us to propose a new sequence of events. As in the previous models, the film destabilization leads to the growth of cold liquid peaks induced by Rayleigh Taylor instability. As these peaks have a smaller density than the drop, they do not penetrate into the hot drop. At the cold liquid-hot liquid contacts, transient heat transfer leads to the explosive boiling of a small amount of coolant. The generated local pressurization deforms the hot melt interface. This can produce fine fragments from the filaments issued from the melt. Some of them may reach the vapor-coolant interface where intense and rapid vaporization occurs. A large bubble then develops, and a new fragmentation sequence may again appear at the bubble collapse. The present model is supported by experimental results.