ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Lung-Kwang Pan
Nuclear Technology | Volume 89 | Number 1 | January 1990 | Pages 116-125
Technical Paper | Technique | doi.org/10.13182/NT90-A34363
Articles are hosted by Taylor and Francis Online.
Destructive gamma-ray analysis of spent-fuel rods from the Taiwan Research Reactor has been performed at the Institute of Nuclear Energy Research. The purpose of the analysis is twofold: to identify the radioactivities, burnup values, and other essential parameters of spent-fuel rods, and to bridge the gap between the predicted and the actual values. The samples of fuel rods are taken from two kinds of irradiated materials: natural uranium metal and uranium dioxide pellets. Each sample is dissolved in nitric acid and diluted to 100 cm3; the uranium in each of these samples is identified down to the order of 10−10 g/cm3 by mass spectroscopy. A high-resolution, high-purity germanium detector coupled with a multichannel analyzer is used to detect 38 multiscaling gamma spectra within a 160-day period. Radioactivities of the evaluated fission products are compared with data from other works and with calculations using the ORIGEN-II code. Eleven of the 18 fission product values are found to be within 20% agreement with the calculated values. Deviations might be due to either an incorrect library file of cumulative fission product yields being used for the theoretical estimates, or to an overestimation of the thermal neutron flux during fuel rod irradiation. Results also indicate that although measurement of the 137Cs activity is an excellent indicator for burnup distribution, the cesium migration might lead to a misinterpretation of the data. Furthermore, the ratio of the activity of either 134Cs or 154Eu to 137Cs can eliminate the migratory effect and give a better approximation of burnup distribution along the axial direction of a spent-fuel rod.