ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—July through September
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from July through September 2024.
Stay tuned for the top stories from the rest of the past year.
Sadayuki Izutsu, Yoshiro Kudo, Junichi Onuma, Tomohiko Iwasaki, Sakae Muto, Akio Toba
Nuclear Technology | Volume 89 | Number 1 | January 1990 | Pages 92-102
Technical Paper | Nuclear Safety | doi.org/10.13182/NT90-A34361
Articles are hosted by Taylor and Francis Online.
Rod drop accidents (RDAs) were calculated for a typical 1100-MW(electric) boiling water reactor (BWR) using the three-dimensional core dynamics simulation code ARIES. Calculated cases are for cold start-up and hot standby cores. In both cold start-up and hot standby core RDAs, the moderator density reactivity feedback has an important effect on suppressing fuel enthalpy increase. Hot standby core RDAs, in particular, show remarkable effects of the moderator density reactivity feedback on reducing the power peak and succeeding fuel enthalpy rise. Sensitivity analyses of the effects of initial power level, core inlet subcooling, rod drop speed, dropping rod worth, etc., have been carried out under both cold start-up and hot standby core conditions for a typical 1100-MW(electric) BWR. In the hot standby core RDAs, the parameters affecting neutronic conditions (such as Doppler feedback) and moderator density proved to be very sensitive. In the cold start-up core RDAs, the parameters affecting moderator density are not so sensitive, but the parameters affecting Doppler feedback or neutronic conditions proved to be more sensitive than in the hot standby core RDAs.