ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—July through September
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from July through September 2024.
Stay tuned for the top stories from the rest of the past year.
Amitzur Z. Barak, Leif Blumenau, H. Branover, A. El-Boher, Ehud Greenspan, E. Spero, S. Sukoriansky
Nuclear Technology | Volume 89 | Number 1 | January 1990 | Pages 36-51
Technical Paper | Fission Reactor | doi.org/10.13182/NT90-A34357
Articles are hosted by Taylor and Francis Online.
Possibilities for increasing efficiency, simplifying the design of the energy conversion system, and reducing the probability of sodium/water interaction in liquid-metal reactors (LMRs) using liquid-metal magnetohydrodynamic (LMMHD) energy conversion technology are investigated. Of the six different LMMHD power conversion systems considered, the LMMHD Rankine steam cycle offers the highest efficiency—up to 15% greater than a conventional LMR. The LMMHD Ericsson gas cycles, on the other hand, offer a significantly simplified and compact LMR plant design. All the LMMHD power conversion systems eliminate the sodium/water interaction problem. In addition to commercial applications, LMMHD energy conversion technology opens interesting new possibilities for special terrestrial as well as space applications of LMRs.