ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reviewers needed for NRC research proposals
The deadline is fast approaching for submitting an application to become a technical reviewer for the Nuclear Regulatory Commission’s fiscal year 2025 research grant proposals.
Luciano Burgazzi
Nuclear Technology | Volume 144 | Number 2 | November 2003 | Pages 145-151
Technical Paper | Reactor Safety | doi.org/10.13182/NT144-145
Articles are hosted by Taylor and Francis Online.
A methodology, to quantify the reliability of passive safety systems, proposed for use in advanced reactor design, is developed. Passive systems are identified as systems that do not need any external input or energy to operate and rely only upon natural physical laws (e.g., gravity, natural circulation, heat conduction, internally stored energy, etc.) and/or intelligent use of the energy inherently available in the system (e.g., chemical reaction, decay heat, etc.). The reliability of a passive system refers to the ability of the system to carry out the required function under the prevailing condition when required: The passive system may fail its mission, in addition to the classical mechanical failure of its components, for deviation from the expected behavior, due to physical phenomena or to different boundary and initial conditions. The present research activity is finalized at the reliability estimation of passive B systems (i.e., implementing moving working fluids, see IAEA); the selected system is a loop operating in natural circulation including a heat source and a heat sink.The functional reliability concept, defined as the probability to perform the required mission, is introduced, and the R-S (Resistance-Stress) model taken from fracture mechanics is adopted. R and S are coined as expressions of functional Requirement and system State. Water mass flow circulating through the system is accounted as a parameter defining the passive system performance, and probability distribution functions (pdf's) are assigned to both R and S quantities; thus, the mission of the passive system defines which parameter values are considered a failure by comparing the corresponding pdfs according to a defined safety criteria. The methodology, its application, and results of the analysis are presented and discussed.