ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Y. W. Wang, B. S. Pei, C. H. King, S. C. Lee
Nuclear Technology | Volume 89 | Number 2 | February 1990 | Pages 217-226
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT90-A34348
Articles are hosted by Taylor and Francis Online.
A method based on noise analysis techniques that can be applied to the identification of two-phase flow patterns in nuclear reactors is proposed. The identifying criterion, the high-frequency contribution fraction (HFCF), offers new potential to the in-core recognition of two-phase flow patterns. By analyzing 76 sets of signals acquired from a research nuclear reactor where two-phase flow patterns are generated in an in-core air/water loop, the typical signal, autocorrelogram, and spectrum of each flow pattern are demonstrated and evaluated. The identification success rate is 87 or 93%, depending on whether churn flow is counted. A method to improve the identification rate is also presented. In comparison with our previous work, this study demonstrates that the fluctuation characteristics above 10 Hz are induced by two-phase flow itself and are independent of the driving source; thus, it is adequate to apply the HFCF to the identification of two-phase flow patterns. The present study shows that it is possible to identify two-phase flow patterns by HFCF values.