ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
Ronald W. Goles, Peter J. Hof, Richard D. Dierks, Langdon K. Holton
Nuclear Technology | Volume 89 | Number 2 | February 1990 | Pages 203-216
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT90-A34347
Articles are hosted by Taylor and Francis Online.
A remote, contactless microprocessor-based control system has been designed, developed, tested, and used at Pacific Northwest Laboratory that accurately positions glass-receiving canisters beneath a radioactive liquid-fed ceramic melter and monitors the height and extent of cross-sectional glass fill. Both tasks are accomplished using in-cell gamma-ray sources and out-of-cell detection, analysis and data interpretation equipment. The system aligns the canister axis with the melter overflow section to within ≈3 mm. The canister glass level at 11 fixed elevations is measured to within ±5 mm, while as little as 5 mm of linear cross-sectional voiding (or equivalent glass thickness) can be detected in 30-cm-diam canisters.