ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
D. M. Lucoff
Nuclear Technology | Volume 88 | Number 1 | October 1989 | Pages 21-29
Technical Paper | Nuclear Safety | doi.org/10.13182/NT89-A34333
Articles are hosted by Taylor and Francis Online.
During 1986, the Fast Flux Test Facility (FFTF) conducted several tests designed to improve the understanding of the passive safety characteristics of an oxide-fueled liquid-metal reactor (LMR). Static and dynamic tests were performed over a broad range of power, flow, and temperature conditions that extended beyond those for normal operation. Key results of these tests are presented. Stable operation at low power with natural circulation cooling was demonstrated. A passive safety enhancement feature, the gas expansion module (GEM) was developed specifically to offset the large amount of cooldown reactivity that needs to be controlled in an oxide-fueled LMR undergoing an unprotected loss-of-flow accident. Nine GEMs were built and successfully tested in FFTF. With the reactor at 50% power [200 MW(thermal)], the main coolant pumps were turned off and the normal control rod scram response was inhibited. The GEMs and inherent core reactivity feedback mechanisms took the core subcritical with a modest peak coolant temperature transient that reached 85°C above the pretransient value and always maintained a >400°C margin to the sodium boiling point (910°C).