ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Truong V. Vo, Bryan F. Gore, Elizabeth J. Eschbach, Fredric A. Simonen
Nuclear Technology | Volume 88 | Number 1 | October 1989 | Pages 13-20
Technical Paper | Fission Reactor | doi.org/10.13182/NT89-A34332
Articles are hosted by Taylor and Francis Online.
Some of the goals of the Nondestructive Evaluation Reliability Program sponsored by the U.S. Nuclear Regulatory Commission at Pacific Northwest Laboratory are to assess current inspection requirements for all pressure boundary systems and components, to determine whether improvements to the requirements are needed, and, if necessary, to develop recommendations for revising the American Society of Mechanical Engineers Boiler and Pressure Vessel Code and regulatory requirements. Part of the work performed in addressing this goal was the development and demonstration of a method to establish in-service inspection priorities through the use of probabilistic risk assessment (PRA) results. The Oconee-3 PRA and the observed weld failure data of the nuclear plants operating in the United States are used to identify and prioritize the most risk-important systems for inspection. Failure modes and effects analysis methodology is then used to identify and prioritize the most riskimportant piping sections of the Oconee-3 emergency feedwater system. Based on the results of this study, this method is demonstrated to be a useful tool for identifying systems and piping sections or welds that need to be inspected.