ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
David D. Lanning
Nuclear Technology | Volume 88 | Number 2 | November 1989 | Pages 139-156
Technical Paper | NSF Workshop on the Research Needs of the Next Generation Nuclear Power Technology / Fission Reactor | doi.org/10.13182/NT89-A34321
Articles are hosted by Taylor and Francis Online.
The modular high-temperature gas-cooled reactor (MHTGR) is modularized primarily to provide the passive safety that will prevent fuel damage over a wide spectrum of accidents. Specifically, this range of safety includes the simultaneous accidental loss of primary coolant flow, depressurization of the coolant system, and failure to trip control mechanisms. The high-temperature capability of the fuel to retain fission products provides a safe margin over this broad spectrum. The passive safety feature of the MHTGR allows elimination of active safety-related cooling components (e.g., pump and valves). The result is a savings in capital cost and an important simplification of management and operator requirements for surveillance of the reactor system. Safety is also less affected by human error. Other advantages of modularization include cost reduction and quality control by factory fabrication and possibilities for stepwise additions to a power plant to follow load growth. A new approach to licensing has been initiated as part of the MHTGR development. This concept includes a system to bridge between the integrated approach to the MHTGR design requirements and the regulatory licensing process. The projected busbar costs (mills per kilowatthour) are estimated to be competitive with coal-fired plants of the same size when two or more MHTGR modules are utilized. Designs with the passive safety features are discussed. Some incentives and impediments for deployment of the MHTGR are examined. In addition, suggestions for university research related to MHTGR are presented.