ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Dong-Keun Cho, Myung-Hyun Kim
Nuclear Technology | Volume 144 | Number 1 | October 2003 | Pages 107-129
Technical Paper | Radioisotopes | doi.org/10.13182/NT03-A3432
Articles are hosted by Taylor and Francis Online.
The use of a low-enriched uranium (LEU) fuel target was examined for the feasibility of 99Mo production in a High-flux Advanced Neutron Application Reactor (HANARO). Uncertainty analysis was done with respect to the 99Mo yield ratio, 239Pu yield ratio, annual production rate, and decontamination requirement. Validity of a coupled code system, MCNP/ORIGEN2, was evaluated to estimate reliable isotopic number densities after irradiation and cooling. An equilibrium core model for the MCNP fixed-source problem was found by the reactor design methodology known as WIMS/VENTURE. Optimized target design options were proposed for both the LEU and highly enriched uranium (HEU) targets. Variables related to the target fabrication process and reactor physics condition were considered as uncertainty-inducing parameters. The most important factor affecting the overall uncertainty of the LEU option was the engineering tolerances achievable in the fabrication process of fuel film. The LEU has twice the uncertainty of HEU under current technology, which makes the economics of LEU worse than HEU. It is acceptable, however, in view of the radioactive purity of the alpha emitter because the uncertainty of the impurity level of 239Pu is expected to be relatively small - only 6.5% with a 95% confidence level.