ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
Dong-Keun Cho, Myung-Hyun Kim
Nuclear Technology | Volume 144 | Number 1 | October 2003 | Pages 107-129
Technical Paper | Radioisotopes | doi.org/10.13182/NT03-A3432
Articles are hosted by Taylor and Francis Online.
The use of a low-enriched uranium (LEU) fuel target was examined for the feasibility of 99Mo production in a High-flux Advanced Neutron Application Reactor (HANARO). Uncertainty analysis was done with respect to the 99Mo yield ratio, 239Pu yield ratio, annual production rate, and decontamination requirement. Validity of a coupled code system, MCNP/ORIGEN2, was evaluated to estimate reliable isotopic number densities after irradiation and cooling. An equilibrium core model for the MCNP fixed-source problem was found by the reactor design methodology known as WIMS/VENTURE. Optimized target design options were proposed for both the LEU and highly enriched uranium (HEU) targets. Variables related to the target fabrication process and reactor physics condition were considered as uncertainty-inducing parameters. The most important factor affecting the overall uncertainty of the LEU option was the engineering tolerances achievable in the fabrication process of fuel film. The LEU has twice the uncertainty of HEU under current technology, which makes the economics of LEU worse than HEU. It is acceptable, however, in view of the radioactive purity of the alpha emitter because the uncertainty of the impurity level of 239Pu is expected to be relatively small - only 6.5% with a 95% confidence level.