ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Edward A. Hoffman, Weston M. Stacey
Nuclear Technology | Volume 144 | Number 1 | October 2003 | Pages 83-106
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT03-A3431
Articles are hosted by Taylor and Francis Online.
Fuel cycle analyses are performed to evaluate the impacts of further transmutation of spent nuclear fuel on high-level and low-level waste mass flows into repositories, on the composition and toxicity of the high-level waste, on the capacity of high-level waste repositories, and on the proliferation resistance of the high-level waste. Storage intact of light water reactor (LWR) spent nuclear fuel, a single recycle in a LWR of the plutonium as mixed-oxide fuel, and the repeated recycle of the transuranics in critical and subcritical fast reactors are compared with the focus on the waste management performance of these systems. Other considerations such as cost and technological challenges were beyond the scope of this study. The overall conclusion of the studies is that repeated recycling of the transuranics from spent nuclear fuel would significantly increase the capacity of high-level waste repositories per unit of nuclear energy produced, significantly increase the nuclear energy production per unit mass of uranium ore mined, significantly reduce the radiotoxicity of the waste streams per unit of nuclear energy produced, and significantly enhance the proliferation resistance of the material stored in high-level waste repositories.