Optimization techniques in fuel management have directed modern fuel cycle designs to use low-leakage loading patterns. Future optimization calculations involving low-leakage patterns must utilize nucleonic models that are both fast operationally and rigorous. A two-dimensional two-group diffusion theory code is developed and lattice homogenization constants are generated using a modified LEOPARD code to fulfill these criteria. Based on these two codes, a heuristic optimization study is performed that considers the general constraints (e.g., spent-fuel storage limit and mechanical burnup limit) given to a utility fuel cycle designer. The optimum cycle length that minimizes the fuel cost is ∼600 effective full-power days for the conditions assumed.