ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Rosanna Chambers, Duane J. Hanson, R. Jack Dallman, Fuat Odar
Nuclear Technology | Volume 88 | Number 3 | December 1989 | Pages 239-250
Technical Paper | Nuclear Safety | doi.org/10.13182/NT89-A34307
Articles are hosted by Taylor and Francis Online.
The capability to depressurize a three-loop pressurized water reactor during a station blackout sequence has been assessed using the SCDAP/RELAP5 computer code. During the initial calculations, failure of the pressurizer surge line from creep rupture was predicted prior to relocation of molten core material to the lower plenum. The system response from that pressure boundary failure was then simulated until the accumulators emptied. Additional calculations assessed the accident progression in the event that the surge line did not fail. These calculations were intended to bound in core damage progression prior to relocation of molten material to the lower plenum. Heat transfer from core material to the coolant was maximized and minimized by varying in-core relocation and fragmentation parameters within their uncertainty ranges. The calculated results indicate that the system pressure can be lowered significantly using pressurizer power-operated relief valves and the reactor vessel head vent, but core damage will be extensive. The magnitude of the system pressure during the later stages of depressurization was not strongly influenced by differences in the core melt progression. However, the amount of core material that relocated to form in a molten pool was strongly affected by variation of in-core damage progression parameters.