ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Harald Zänker
Nuclear Technology | Volume 86 | Number 3 | September 1989 | Pages 239-247
Technical Paper | Fission Reactor | doi.org/10.13182/NT89-A34292
Articles are hosted by Taylor and Francis Online.
Periods of continuously decreasing levels of fuel rod integrity due to debris-induced cladding damage, vibration-induced fretting wear of the cladding, etc., cause difficulties in the assessment of fuel rod performance from coolant activity data. The calculational models currently in use for this purpose in nuclear power plants are not sufficiently capable of indicating cases in which they are invalid. This can mislead reactor operators by misinterpretation of the coolant activity data, especially in situations where fast reactions are necessary. A quick test of validity is suggested to check the applicability of the currently available calculational models for estimating the number and average size of fuel rod defects. The criteria of applicability are the fission product total activity, the slope tanα in the relationship Ig(Ri/Bi) = tanαlg λi for the volatile fission product isotopes, and the activity of nonvolatile nuclides such as 239Np and the isotopes of ruthenium and cerium. The objective is to recognize immediately periods of continuously decreasing levels of fuel rod integrity in order to prevent complications in routine power plant maintenance as well as accident situations caused by more severe fuel rod degradation.