ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Akio Yamamoto
Nuclear Technology | Volume 144 | Number 1 | October 2003 | Pages 63-75
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT03-A3429
Articles are hosted by Taylor and Francis Online.
In this paper, neural networks are used to predict core characteristics, and the predicted results are used to screen poor loading patterns in order to improve optimization efficiency. The radial peaking factor, cycle length, and maximum burnup through the cycle depletion calculations were evaluated by the neural network, and these core characteristics were used for screening. The screened loading patterns were evaluated by the core calculation code as ordinary in-core optimizations. The calculation results of the test problem indicated that the loading pattern screening using the neural network effectively improves the optimization results. Since the computation time for a cycle depletion calculation with the neural network is quite short, the computation load for the screening is negligible. Since the neural network is periodically retrained using the latest evaluation results of the core calculation code, its prediction accuracy is continuously improved during the optimization. The typical prediction accuracies of the radial peaking factor, cycle length, and maximum burnup in the latter part of the optimizations were 3 to 4%, 0.01 to 0.02 GWd/t, and 0.2 GWd/t, respectively, in the test problem. These accuracies are satisfactory for loading pattern screening.