ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
Robert L. Louie, Dwayne R. Speer
Nuclear Technology | Volume 86 | Number 2 | August 1989 | Pages 120-127
Technical Paper | Decontamination and Decommissioning / Radioactive Waste Management | doi.org/10.13182/NT89-A34262
Articles are hosted by Taylor and Francis Online.
The decommissioning of the Strontium Semiworks Complex, located in the 200 East Area of the Hanford Site, is nearing completion. This facility operated as a pilot plant from 1949 to 1967 to develop fuel reprocessing technology and a method for separating strontium from high-level liquid wastes. Contamination of the facility from these operations was extensive. One of the major activities completed was the decommissioning of the plant exhaust stack. Demolition of the stack was accomplished using explosives. This required decontamination of the stack interior to minimize the release of airborne contamination. Radiation levels in the stack prior to cleaning ranged from 2.5 to 90 mGy/h as measured along the stack centerline. Decontamination was accomplished by sandblasting, using equipment specially designed and fabricated to allow the work to be performed remotely. Radiation levels measured after decontamination were in the range of 0.01 mGy/h. No airborne contaminants were detected following the demolition using air samplers stationed along the perimeter of the site.