ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Michael P. Manahan
Nuclear Technology | Volume 85 | Number 3 | June 1989 | Pages 324-333
Technical Paper | Material | doi.org/10.13182/NT89-A34254
Articles are hosted by Taylor and Francis Online.
Small flakes that consist primarily of magnetite have been discovered on the secondary side of the steam generator of the Three Mile Island Unit 1 plant. These iron oxide flakes are believed to cause significant increases in flow resistance, which in turn causes abnormal increases in steam generator water level. It is necessary to measure the physical properties of the tube scale so that the maximum amount of loose flakes can be generated prior to hydrodynamic cleaning (water slap). It is also important to study the flake properties to shed light on the flake formation and transport mechanisms. Once the physical properties of the tube scale are determined, the effects of hydrodynamic cleaning (water slap) can be optimized by preconditioning the scale. There are several preconditioning options including prewetting, predrying, and thermal cycling of the steam generator tubes. Understanding the physical properties of the scale would also be beneficial in optimizing the water slap technique itself. Elastic modulus, fracture stress, thermal expansion, and swelling of the flakes were measured. With one exception, all of the flakes studied were either one-or two-layered as judged by microstructural variation. The fracture stress of the flake materials tested was in the range of 20.0 to 113.8 MPa (2.9 to 16.5 ksi). There did not appear to be a substantial change in the range of stresses measured at elevated temperatures. There was no evidence of delamination during bend testing. The mean coefficient of linear thermal expansion was a factor of ∼2 larger than that of Fe3O4. The maximum amount of swelling measured was 0.0012%, which is consistent with earlier data on flakes from the Oconee-2 plant.