ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—July through September
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from July through September 2024.
Stay tuned for the top stories from the rest of the past year.
Mukesh Tayal, Lorne D. Macdonald, Erl Kohn, Walter P. Dovigo
Nuclear Technology | Volume 85 | Number 3 | June 1989 | Pages 300-313
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT89-A34252
Articles are hosted by Taylor and Francis Online.
The GASOUT computer code calculates fission gas release, activity release, and fission product swelling in a Canada deuterium uranium (CANDU) fuel element during transient (nonequilibrium) conditions such as load following, postulated accidents involving high temperatures, and temporary postdryout operation of fuel. The phenomena modeled in the code include production of isotopes; diffusion; grain growth, both equiaxed and columnar; sweeping by grain boundaries; growth of grain-boundary bubbles; interlinkage of bubbles; grain-face separation; release by melting; radioactive decay; and effect of precursors. These phenomena are described in the code by rate equations, which are integrated numerically within the code. Therefore, the model is dynamic and provides results during short-term transients (few seconds to few days) as well as at the end of long irradiations (few years). This one-dimensional code was developed for accident conditions that lead to high fuel temperature, but it is also applicable to normal operating conditions. The activity calculations account for contributions from both volatile and nonvolatile fission products. They also account for radioactive decay during all the above processes and for the effect of precursors. The predictions of GASOUT were found to be in reasonable agreement with the steady-state predictions (for stable gas) of the NOTPAT code on which it is based. Furthermore, agreement was also reasonable to exact solutions from the Booth diffusion model, to data from the CONTACT-1 series of experiments and from the direct electric heating experiments, and to American Nuclear Society Standard 5.4.