ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Nuclear waste: Trying again, with an approach that is flexible and vague
The Department of Energy has started over on the quest for a place to store used fuel. Its new goal, it says, is to foster a national conversation (although this might better be described as many local conversations) about a national problem that can only be solved at the local level with a “consent-based” approach. And while the department is touting the various milestones it has already reached on the way to an interim repository, the program is structured in a way that means its success will not be measurable for years.
L. C. Lewis, J. P. Henscheid
Nuclear Technology | Volume 85 | Number 3 | June 1989 | Pages 294-299
Technical Paper | Chemical Processing | doi.org/10.13182/NT89-A34251
Articles are hosted by Taylor and Francis Online.
The Remote Analytical Laboratory at the Idaho Chemical Processing Plant was designed to provide analytical chemistry support to the irradiated fuel processing and associated waste processing operations. The facility was put into radioactive operation on July 7, 1986, and operated for more than a year during the first fluorinel fuel dissolution process campaign. The facility incorporated a number of innovative features and was equipped with state-of-the-art analytical instrumentation. The success of the facility is a direct function of how well the remote analytical equipment performed. A wide range of high-technology methods, which were adapted for remote use, proved to be reliable and provided accurate measurements of chemical parameters. Sample turnaround times were of interest because in some instances the turnaround time was the process rate-limiting step. Several innovative features were built into the system to reduce turnaround time. These included remote log-in of samples, pneumatic sample delivery systems, specialized training, computerized sample result reporting, and improvements in the placement of equipment.