ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Makoto Osaki, Akira Kanagawa
Nuclear Technology | Volume 85 | Number 3 | June 1989 | Pages 274-284
Technical Paper | Nuclear Safety | doi.org/10.13182/NT89-A34249
Articles are hosted by Taylor and Francis Online.
To examine the performance of the high-efficiency particulate air (HEPA) filter, demonstration tests were performed under several severe conditions. The HEPA filter tested is a 610- × 610- × 292-mm conventional deep-pleat filter, normally used in a fuel reprocessing plant. It was tested under a variety of conditions: in air with concentrated dust (100 mg/m3), at high temperatures (maximum 240°C), in humid air (relative humidity 95% and water mist of 100 mg/m3), in a shock transient (overpressure up to 50 kPa), in a large air flow (pressure drop up to 20 kPa), under severe earthquake conditions (acceleration up to 50 m/s2), and in acid and alkaline mists (6 N HNO3, 5% NaOH, 5% Na2CO3). For reference, the performance of HEPA filters in normal conditions was also measured. The HEPA filter performed efficiently enough, even in such severe conditions as would be encountered in a waste air purification system in the nuclear industry. Some empirical formulas are proposed to express the performance of the filter.