ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—July through September
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from July through September 2024.
Stay tuned for the top stories from the rest of the past year.
Kazunori Sasaki, Naotaka Terashita, Takamichi Ogino
Nuclear Technology | Volume 85 | Number 3 | June 1989 | Pages 259-273
Technical Paper | Fission Reactor | doi.org/10.13182/NT89-A34248
Articles are hosted by Taylor and Francis Online.
A pressurized water reactor plant analyzer code (NUPAC-1) has been developed to apply to an operator support system or an advanced training simulator. The simulation code must produce reasonably accurate results as well as run in a fast mode for realizing functions such as anomaly detection, estimation of unobservable plant internal states, and prediction of plant state trends. The NUPAC-1 code adopts fast computing methods, i.e., the table fitting method of the state variables, time-step control, and calculation control of heat transfer coefficients, in order to attain accuracy and fast-running capability. The NUPAC-1 results are compared with the RELAP5/MOD2 results to assess the accuracy for accident analyses such as loss of coolant, feedwater line break, and steam generator tube rupture. The fast computing methods had a negligibly small effect on accuracy and contributed to fast-running capability. The NUPAC-1 code can be applied to the operator support system and the advanced training simulator as a two-phase simulation code.