ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Karen H. Koger, M. Jonathan Haire, Brett L. Humphrys, Jay F. Manneschmidt, Keiichi Setoguchi, Ryodai Nakai
Nuclear Technology | Volume 85 | Number 3 | June 1989 | Pages 251-258
Technical Paper | Fission Reactor | doi.org/10.13182/NT89-A34247
Articles are hosted by Taylor and Francis Online.
Availability information contained within the Centralized Reliability Data Organization (CREDO) liquid-metal reactor (LMR) data base is presented, and the availability critical items lists are developed. Individual components are ranked in prioritized lists from worst to best performers from an availability standpoint. Availability, as used here, is assumed to be an inherent characteristic of the component and is not necessarily assumed to be related to plant operability. A major observation is that of ∼5000 components analyzed at each reactor site, a few components have a much higher unavailability factor than the average. In particular, 15 components contribute 93, 77, and 87% of the total system unavailability for the Experimental Breeder Reactor II, the Fast Flux Test Facility, and the Japanese Experimental Fast Reactor (JOYO), respectively. Critical components common to all three sites are mechanical pumps and electromagnetic pumps. By identifying components in this way, site personnel will be more efficient in their attempts at increasing overall system availability; i.e., attention can be focused on components that have a high contribution to overall system unavailability. All three sites demonstrate that low maintainability (i.e., long repair times) is about twice as likely to contribute to unavailability of a component than unreliability (i.e., high failure rates). The analyses were conducted using data and information from CREDO, the largest repository of LMR component reliability data in the world. The system is cosponsored by the U.S. Department of Energy and the Power Reactor and Nuclear Fuel Development Corporation of Japan. The CREDO data base contains information on a population of >20 000 components and addresses ∼1500 events (i.e., abnormal component occurrences). A conservative estimation is that total component operating hours approaches 2.2 billion hours.