ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—July through September
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from July through September 2024.
Stay tuned for the top stories from the rest of the past year.
Masaki Suwa, Atsuyuki Suzuki
Nuclear Technology | Volume 85 | Number 2 | May 1989 | Pages 187-205
Technical Paper | Chemical Processing | doi.org/10.13182/NT89-A34240
Articles are hosted by Taylor and Francis Online.
The pinching effect in a co-decontamination extraction process is investigated with much concern for criticality safety control. To predict the pinching effect, computer codes, such as PULCO, are used to make numerical simulations. Using computer codes for criticality safety control seems to be impractical, however, because some uncertainties are inevitably associated with the calculation due to the assumptions that are included in a simulation code; thus, a safety margin must be taken into account in designing extraction equipment. A new model for inferring pinching effects is proposed. It is based on knowledge that represents the intrinsic nature of the pinching effect and a co-decontamination process holding independent of process conditions. The predictions obtained from this model are conservative, but practical from the standpoint of criticality safety control. The margin in designing equipment can be reduced if the overall reliability of a measurement system in which this model is to be incorporated is high enough to predict pinching effects. The program of this model is written in logic programming language, C-Prolog.