ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Masaki Suwa, Atsuyuki Suzuki
Nuclear Technology | Volume 85 | Number 2 | May 1989 | Pages 187-205
Technical Paper | Chemical Processing | doi.org/10.13182/NT89-A34240
Articles are hosted by Taylor and Francis Online.
The pinching effect in a co-decontamination extraction process is investigated with much concern for criticality safety control. To predict the pinching effect, computer codes, such as PULCO, are used to make numerical simulations. Using computer codes for criticality safety control seems to be impractical, however, because some uncertainties are inevitably associated with the calculation due to the assumptions that are included in a simulation code; thus, a safety margin must be taken into account in designing extraction equipment. A new model for inferring pinching effects is proposed. It is based on knowledge that represents the intrinsic nature of the pinching effect and a co-decontamination process holding independent of process conditions. The predictions obtained from this model are conservative, but practical from the standpoint of criticality safety control. The margin in designing equipment can be reduced if the overall reliability of a measurement system in which this model is to be incorporated is high enough to predict pinching effects. The program of this model is written in logic programming language, C-Prolog.