ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
John F. Geldard, Adolph L. Beyerlein
Nuclear Technology | Volume 85 | Number 2 | May 1989 | Pages 172-186
Technical Paper | Chemical Processing | doi.org/10.13182/NT89-A34239
Articles are hosted by Taylor and Francis Online.
The mathematical basis for a computer code CUSEP (Clemson University Solvent Extraction Program) is described. The code simulates the temporal and steady-state concentration profiles in pulsed column contactors using the Purex process. Advantage is taken of the cellular structure of a pulsed column contactor caused by the presence of sieve plates and the turbulent flow to generate a set of equations that explicitly contain the instantaneous flow of the fluids caused by the pulse frequency and amplitude. The assumption is made that there are volumes in the contactors within which the time-averaged concentrations can be regarded as uniform. The size of these volumes is defined in terms of a parameter whose value is obtained by calibration against experimental data. Longitudinal diffusive remixing is shown to be negligible in comparison to convective remixing caused by the pulsing. Mass transfer between phases can occur at the equilibrium limit or can be allowed to deviate from it. The deviation is accounted for by a mass transfer area that is determined by the average size of droplets in the pulsed column and a mass transfer coefficient that is treated as a second input parameter. The code has been used to generate concentration profiles in several extraction (A-type) and stripping (E-type) contactors and in a partitioning (B-type) contactor. Agreement between calculated and available experimental concentration profiles is good.