ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Todd K. Campbell, Edgar Robert Gilbert, George D. White, Gregory F. Piepel, Bernard J. Wrona
Nuclear Technology | Volume 85 | Number 2 | May 1989 | Pages 160-171
Technical Paper | Fuel Cycle | doi.org/10.13182/NT89-A34238
Articles are hosted by Taylor and Francis Online.
As a first phase in the investigation of the feasibility of storing light water reactor spent fuel in air, oxidation tests were performed on nonirradiated UO2 pellets over the temperature range of 150 to 345°C. The objective of the tests was to determine the important independent variables that affect the oxidation behavior of fuel. Pellets tested at the high end of the temperature range (>230°C) oxidized very rapidly from the standpoint of projected storage periods in air. These results suggest that acceptable spent-fuel storage temperatures should be <230°C. The tests also revealed that the oxidation was initially retarded by the presence of a coating, probably a higher oxide, that formed on pellets during the period of air storage before they were tested. The oxide coating became increasingly semiprotective after longer storage periods. Other variables identified as important to oxidation behavior of fuel were temperature, radiolysis of a static air atmosphere, fuel microstructure, gadolinia content, and humidity.