ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
T. Sampat Sridhar, Ahmad G. Solomah
Nuclear Technology | Volume 85 | Number 1 | April 1989 | Pages 89-97
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT89-A34230
Articles are hosted by Taylor and Francis Online.
A process has been developed to immobilize the uranium-rich high-level radioactive waste generated from the reprocessing of CANDU spent fuel using the amine process. The calcination technology developed in the Process Development Section at the Whiteshell Nuclear Research Establishment has been used to demonstrate this process. Simulated liquid waste and SYN-ROC additives were denitrated thermochemically in a continuous operation using the Whiteshell Roto-Spray Calciner. Technically dense (≥95% theoretical density) samples of SYNROC-FA crystalline ceramic waste form containing ∼50 wt% simulated amine process waste were prepared by pressureless sintering at 1250°C under reducing atmosphere (N2-5 vol% H2) conditions. X-ray diffraction and grain microanalyses using an electron probe microanalyzer and an energy dispersive X-ray analyzer revealed the existence of a pyrochlore-structured phase CaU(Ti3+, Ti4+)2O7, perovskite (Ca,U)(Ti3+,Ti4+)O3, barium-hollandite Ba1.14(Al3+, Ti3+)2.27Ti5.71O16, and uraninite (U,Ca,Ti)O2. Leach tests (modified MCC-1) carried out in a simulated Canadian shield groundwater at 90°C for 120 days revealed that barium was the only ion released into the leachants, with an initial leach rate of 2x 10-1 g · m-2. day-1 measured after a 3-day period. The leach rate dropped to 6 x 10-3 g.m-2.day-1 after 120 days of leaching. The concentrations of uranium and other simulated fission products in the leachants were below the detection limits of inductively coupled plasma spectrometry and atomic absorption techniques. The leach rates of uranium and titanium were estimated to be <6 x 10-5 and 3 x 10-5 g·m-2.day-1, respectively.