ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NRC’s hybrid AI workshop coming up
The Nuclear Regulatory Commission will host a hybrid public workshop on September 24 from 9 a.m.-5 p.m. Eastern time to discuss its activities for the safe and secure use of artificial intelligence in NRC-regulated activities.
Robert E. Woodley, Robert E. Einziger, H. Craig Buchanan
Nuclear Technology | Volume 85 | Number 1 | April 1989 | Pages 74-88
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT89-A34229
Articles are hosted by Taylor and Francis Online.
A series of pressurized water reactor spent-fuel samples from Turkey Point Unit 3 have been oxidized at temperatures between 140 and 225°C in air atmospheres with dew points between 14.5 and -70°C, using a thermogravimetric analysis system. Tests lasted between 400 and 2100 h. At the conclusion of a test, the atmosphere was sampled to determine the release of fission gas during testing, and the fuel samples were analyzed for microstructural changes. It appears that the mechanisms for oxidation of spent fuel to U3O7 takes place in two steps that occur somewhat simultaneously. Oxygen migrates along the grain boundaries, which are oxidized and enlarged. The grains oxidize by the inward progression of a layer of U4O9 saturated with oxygen. A simplified model of the mechanism, which considers oxygen diffusion through the product layer as the rate-controlling step, yields an activation energy of 113 ± 17 kJ/mol. Moisture, between dew points of —70 to +14.5°C, i.e., water vapor partial pressures varying over four orders of magnitude, had no significant effect on the oxidation rate.