ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Yukio Ishiguro, Keisuke Okumura
Nuclear Technology | Volume 84 | Number 3 | March 1989 | Pages 331-343
Technical Paper | Probabilistic Safety Assessment and Risk Management / Fission Reactor | doi.org/10.13182/NT89-A34217
Articles are hosted by Taylor and Francis Online.
A new concept is proposed for a high conversion light water reactor (HCL WR) that achieves both high conversion and high burnup while maintaining a negative void reactivity coefficient. This HCLWR has a flat “pancake” core with thick axial blankets. By using the flat core, a potential problem of HCLWRs, the positive void reactivity coefficient, can be reduced by neutron leakage, and a fuel assembly of very tight lattice pitch can be used. The leakage neutrons are utilized in the axial blankets to enhance the conversion ratio. With the axial blankets, the core shows a small value for the axial power peaking factor, and the plutonium enrichment can be largely reduced by the neutron reflection, including the fast fission due to 238U, compared with the bare core. Moreover, upgraded burnup characteristics can be obtained by the accumulation of fissile plutonium in the blankets. The flat core with the blankets can be applied to a small- or intermediate-scale light water reactor. The analysis combines a cell burnup calculation and a one-dimensional burnup calculation based on the diffusion method. The evaluation method of the void coefficient is validated for the flat core with axial blankets under practical, controlled conditions. Moreover, the accuracy of the present method is validated for the transport effect on the major physics parameters of interest by using the one-dimensional transport code ANISN and the Monte Carlo code VIM.