ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Takeshi Matsuoka, Michiyuki Kobayashi, Kazuo Takemura
Nuclear Technology | Volume 84 | Number 3 | March 1989 | Pages 285-295
Technical Paper | Probabilistic Safety Assessment and Risk Management / Nuclear Safety | doi.org/10.13182/NT89-A34212
Articles are hosted by Taylor and Francis Online.
A reliability analysis using the GO-FLOW methodology is given for the emergency core cooling system (ECCS) of a marine reactor experiencing either a collision or a grounding accident. The analysis is an example of a phased mission problem, and the system is a relatively large system with 90 components. An overview of the GO-FLOW methodology, a description of the ECCS, and the analysis procedure are given. Time-dependent mission unreliabilities under three accident conditions are obtained by one GOFLOW chart with one computer run. The GO-FLOW methodology has proved to be a useful tool for probabilistic safety assessments of actual systems.