ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—July through September
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from July through September 2024.
Stay tuned for the top stories from the rest of the past year.
Nathan Siu, Ali Mosleh
Nuclear Technology | Volume 84 | Number 3 | March 1989 | Pages 265-281
Technical Paper | Probabilistic Safety Assessment and Risk Management / Nuclear Safety | doi.org/10.13182/NT89-A34210
Articles are hosted by Taylor and Francis Online.
Uncertainties in the estimation of parameters for common-cause failure models arise not only because of the small number of common-cause failure events but also because recorded events may not be relevant to the analysis of a particular plant. The data base for a plant-specific analysis may therefore be uncertain. A Bayesian methodology for treating data base uncertainties in the estimation of common-cause failure model parameters is developed and applied to a three-pump auxiliary feedwater system. Sensitivity analyses show that the results are not strongly sensitive to assumptions concerning prior distribution type and shape, but do depend somewhat on the degree of state-of-knowledge dependence between uncertain events. These analyses also show that ignoring the uncertainties in the data can lead to significant estimation errors. Finally, an approximate methodology for treating uncertain data is examined; this method provides reasonable estimates of the mean values of the common-cause failure model parameters, but underpredicts the uncertainty in these parameters.