ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
B. Thierry Meslin
Nuclear Technology | Volume 84 | Number 3 | March 1989 | Pages 239-246
Technical Paper | Probabilistic Safety Assessment and Risk Management / Nuclear Safety | doi.org/10.13182/NT89-A34205
Articles are hosted by Taylor and Francis Online.
Electricité de France has conducted a probabilistic safety study on one of its 1300-MW(electric) reactors since the beginning of 1986. Practically all the reliability data used in this study are derived from the experience feedback from EdF’s pressurized water reactor units. The data concerning common-cause failures (CCFs) are therefore calculated on the basis of the information in EdF’s national files or on-site investigations. For most of the components (in particular, pumps and valves), the SRDF (system for gathering reliability data) and the event file of EdF’s Nuclear and Fossil Generation Division were used and >1200 data sheets were analyzed. Approximately 100 data sheets concerning CCFs were identified and CCF rates were deduced using the binomial failure rate method. In addition, a number of exhaustive investigations were carried out at the site chosen for the probabilistic study and samples of CCFs were analyzed in qualitative terms. The results were taken into account in the studies, and corrective actions were implemented on the site. Several observations were made on the basis of this work. The CCFs seem inevitable as they are of a complex and variable nature: problems of design or operation, meteorological conditions, human error, etc. As a result, it is very difficult to find a simple remedy and the number of solutions is often equal to the number of cases observed. Experience feedback is of fundamental importance to the rapid identification and correction of CCFs, especially for utilities that, like EdF, operate many standardized units. Finally, it appears that quantification of the problem is possible to a certain extent and that the order of magnitude of the rates of order 2 (ß2) CCFs is relatively well known, as is that of most components of order 0.1. The determination of the β rates at higher orders (β3, β4, etc.) still seems to be full of uncertainties, however.