ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Adolfas K. Gaigalas, Ann Chidester Van Orden, Baldwin Robertson, Thomas H. Mareci, Lori A. Lewis
Nuclear Technology | Volume 84 | Number 1 | January 1989 | Pages 113-118
Technical Note | Radioactive Waste Management | doi.org/10.13182/NT89-A34201
Articles are hosted by Taylor and Francis Online.
The flow of water in porous materials has been visualized using nuclear magnetic resonance imaging (MRI). For flow in an initially dry bed, the water gives a large signal that can be detected directly. Flow in a wet bed is visualized indirectly by displacing the pure water with a dilute solution of paramagnetic ions. This solution does not give an MRI signal and so can be contrasted with pure water. Another use of MRI is to observe the absorption of water by a solid. The MRI technique is sensitive and can give accurate and quantitative results for flow with low Peclet number.